

EPSRC Programme Grant EP/G059063/1

Public Paper no. 311

Integrating the PVSio-web Modelling and
Prototyping Environment with Overture

Paolo Masci, Luis D. Couto, Peter G. Larsen & Paul Curzon

Masci, P., Couto, L. D., Larsen, P. G., & Curzon, P. (2015).

Integrating the PVSio-web modelling and prototyping
environment with Overture.

Proceedings of the 13th Overture Workshop, 33–47.
(GRACE Technical report 2015-06, ISSN 1884-0760.)

PP release date: 24 May 2015

file: WP311.pdf

Integrating the PVSio-web modelling and prototyping
environment with Overture

Paolo Masci1,?, Luis Diogo Couto2, Peter Gorm Larsen2, and Paul Curzon1

1 School of Electronic Engineering and Computer Science
Queen Mary University of London, United Kingdom

{p.m.masci,p.curzon}@qmul.ac.uk
2 Department of Engineering
Aarhus University, Denmark
{ldc,pgl}@eng.au.dk

Abstract. Tools are needed that overcome the barriers preventing development
teams using formal verification technologies. We present our work integrating
PVSio-web with the Overture development and analysis environment for VDM.
PVSio-web is a graphical environment for modelling and prototyping interactive
systems. Prototypes developed within PVSio-web can closely resemble the vi-
sual appearance and behaviour of a real system. The behaviour of the prototypes
is entirely driven by executable formal models. These formal models can be gen-
erated automatically from Emucharts, graphical diagrams based on the Statechart
notation. Emucharts conveniently hides aspects of the formal syntax that create
barriers for developers and domain experts who are new to formal methods. Here,
we present the implementation of a VDM-SL model generator for Emucharts.
An example is presented based on a medical device. It demonstrates the bene-
fits of using Emucharts to develop a formal model, how PVSio-web can be used
to perform lightweight formal analysis, and how the developed VDM-SL model
generator can be used to produce a model that can be further analysed within
Overture.

Keywords: Prototyping, VDM-SL, PVSio-web.

1 Introduction

Formal verification technologies can help developers to discover design problems early
in the development process of safety critical systems. These technologies, however,
usually require significant mathematical sophistication, and many developers perceive
this as a barrier that overweighs the advantages of using such tools.

PVSio-web [1,2] is a new research tool developed to ease the use of formal methods
technologies when developing safety-critical interactive systems, i.e., ones that involve
interaction between devices and human users. It provides a graphical environment that
allows developers to rapidly generate interactive prototypes resembling the visual ap-
pearance and behaviour of the real system (see Figure 1). Underneath the interface, the
? Corresponding author.

2 Paolo Masci, Luis Diogo Couto, Peter Gorm Larsen, and Paul Curzon

Fig. 1: Screenshot of the PVSio-web graphical environment while creating an interac-
tive prototype based on a formal model.

tool uses advanced formal methods technologies for modelling and analysis. PVSio-
web has been successfully used to demonstrate previously undetected design flaws in
medical devices [3], and to clarify the causal relationships between user interface issues
and software defects [4].

In its current implementation, PVSio-web builds on the PVS [5] theorem proving
system for modelling and analysis. However, the architecture of PVSio-web is general,
and allows one to link the environment with other formal methods tools.

We report on our work on integrating PVSio-web [1] with the Overture [6] devel-
opment and analysis environment for VDM. This benefits both PVSio-web and Over-
ture users. PVSio-web users gain direct access to an extensive set of tool features and
case studies developed by the VDM community. Overture users gain the modelling and
prototyping functionalities offered by PVSio-web, which enable: validation of formal
models with domain specialists before starting a verification process; demonstration
of formal analysis results to domain specialists in a way that is easy to comprehend;
lightweight formal analysis of user interfaces based on user-centered design methods.
Here, we focus on the integration of a core PVSio-web tool, the Emucharts editor,
with Overture. Using the Emucharts editor, developers can specify the behaviour of a
PVSio-web prototype using graphical diagrams, and automatically generate executable
PVS models from these diagrams. We have successfully extended the Emuchars editor

Integrating PVSio-web with Overture 3

to enable generation of VDM models. This basic integration already opens several ex-
citing options, including automatic translation of VDM models from/to PVS, as well
as means to explore the behaviour of VDM models using PVSio-web prototypes. The
contributions are:

– A new PVSio-web extension for generating executable VDM specification lan-
guage (VDM-SL) models.

– An example application based on a medical device. A formal model of the device
is specified using a graphical Emucharts diagram that hides aspects of the formal
syntax; then, a device prototype based on the Emucharts is generated that enables
lightweight formal analysis; finally, a VDM-SL model is generated from the same
Emucharts, enabling full formal analysis in Overture.

Related Work. VDMPad [7, 8] is a web-based integrated development environment
for developing VDM-SL models. The tool provides: a textual model editor for view-
ing and editing models; a model animator for model debugging and testing. The tool
supports the exploratory development of formal models, allowing lightweight formal
analysis and permissive checking. In contrast to VDMPad, PVSio-web is specifically
designed for modelling and analysis of interactive (human-computer) systems. Our tool
thus offers functionalities for generating realistic interactive prototypes that can closely
resemble the visual aspect and behaviour of a real system. The behaviour of these proto-
types is based on formal models executed within the PVSio [9] animation environment
of PVS. SCR [10] and B-Motion Studio [11] are also related work in that both tools
provide a way to obtain graphical prototypes from formal models. Using SCR, one can
formally specify the behaviour of a system, use visual front-ends for demonstrating
the system behaviour based on the specifications, and use a group of formal methods
tools for the analysis of system properties. With B-Motion Studio, one can create sim-
ple graphical visualisations based on Event-B models. SCR and B-Motion Studio are,
however, not integrated with Overture. In addition, these tools lack specialised func-
tionalities needed for the analysis of user interfaces (e.g., deployment of prototypes on
mobile devices, and logging of user interactions).
Organisation. The remainder of the paper is organised as follows. We first overview
the PVSio-web Emucharts Editor in Section 2. The core of the paper, illustrating a
VDM-SL model generator for Emucharts, is presented in Section 3. We then give,
in Section 4, a small example with a medical device. The example illustrates how
Emucharts can be conveniently used to develop a formal model of the data entry system
of the device (in subsection 4.2), how PVSio-web supports lightweight formal analysis
(in subsection 4.3), and how the developed VDM-SL model generator can be used to
produce an executable VDM-SL model that can be further analysed within Overture
(in subsection 4.5). Finally, Section 5 provides a number of concluding remarks and
indicates the future plans with this work.

2 Emucharts Editor

The PVSio-web Emucharts Editor is a tool for developing models of interactive sys-
tems. Models are specified using graphical diagrams called Emucharts, based on Stat-
echarts [12]. Figure 1 shows a snapshot of the Emucharts Editor in use developing a

4 Paolo Masci, Luis Diogo Couto, Peter Gorm Larsen, and Paul Curzon

diagram specifying the behaviour of a medical device. Using the Emucharts Editor,
developers can:

– Draw labelled boxes representing states of the system. State labels are strings rep-
resenting the names of the different modes of the modelled system.

– Draw labelled arrows representing transitions between states. Transition labels are
in the form t [cond] { actions }. The transition name (t) is a sym-
bolic constant identifying the name of the modelled event. The transition condition
(cond) is a Boolean expression defining the circumstances under which the tran-
sition is taken. The transition actions (actions) are expressions defining how the
system state changes when the transition is taken.

– Define variables representing the structure of the system state. State variables are
tuples: (name, type, value, v0). Variable names are unique. Variable types can be
basic types (e.g., bool, int, real), or user-defined types (e.g., records, lists).
As in modern programming languages, a variable’s value can be retrieved by ref-
erencing the variable name, and can be updated using assignment expressions (the
assignment operator is :=). Each variable has an initial value, v0, given as the last
element of the tuple.

In the Emucharts Editor, a virtual palette provides the essential elements for draw-
ing the diagram (i.e., boxes and arrows), as well as tools for editing labels of diagram
elements, and erasing elements from the diagram. Variables, constants, and functions
are declared in a table called context, separately from the graphical diagram.

The Emucharts Editor was developed using the Model-View-Controller [13] design
pattern, which creates a clear separation between the graphical front-end of the tool, and
the logic for generating formal models. The editor, in fact, has two main components.
The first is a Visual Editor, which handles both interactions with the user when drawing
a diagram, and the look-and-feel of the graphical elements of the diagram. The second
element is a Model Generator, which allows developers to translate visual diagrams into
formal models.

In this work, we extend the Model Generator, and introduce a new module for pro-
ducing executable VDM-SL models that can be imported and analysed within Overture.

3 The VDM-SL Model Generator

Our VDM-SL model generator is for Emucharts diagrams representing deterministic
event-driven state machines. That is, the state machine has: a finite number of states,
each representing a mode of the modelled system; a finite set of transitions, each mod-
elling events that change the system state; and a single initial state, modelling the start-
ing state of the state machine. The state machine can be in only one state at a time, and
perform only one transition in each state for each possible input.

The rules for generating VDM-SL models from Emucharts diagrams are as follows,
and illustrated in an example in the next section:

– A VDM-SL module is generated for each Emucharts diagram. The name of the
module is the name of the Emucharts diagram.

Integrating PVSio-web with Overture 5

– A VDM-SL state block EmuchartState is generated for specifying the state
of the VDM-SL model. The record includes a field for each variable declared in
the Emucharts diagram. The name and type of each field is the name and type of
the variable from which the field has been generated. Two additional record fields,
current state and previous state, are also automatically generated: the
former represents the current machine state; the latter represents the previous ma-
chine state.

– A VDM-SL mk EmuchartState record constructor is available to initialise the
state of the VDM-SL model with the initial values of the variables declared in the
Emucharts diagram.

– A VDM-SL enumerated type MachineState is generated for each Emucharts
state. The enumerated type constants are the Emucharts state labels.

– A VDM-SL transition function of type EmuchartState ! EmuchartState
is generated for each unique transition name in the Emucharts diagram. The func-
tion argument models the current state of the VDM-SL model. The function return
models the next state of the VDM-SL model after the execution of the transition
function.

– The body of each VDM-SL transition function is a sequence of conditional if-then-
else blocks. The Boolean expression used in each conditional block is the con-
junction of two elements: the transition condition specified in the transition label;
and a Boolean expression based on the current Emucharts state. The body of each
conditional block is a series of modifier expressions (mu(...)) that update the
current model state according to the transition actions specified in the diagram. The
modifier expressions are chained to each other using the let-in construct.

– A VDM-SL permission function of type EmuchartState ! bool is gener-
ated for each function of the VDM-SL model. The body of the permission func-
tion is the disjunction of the Boolean expressions used in the top-level if-then-else
blocks that make up the body of the transition function.

– A VDM-SL operation is generated for each transition function.

4 Example

In this section we use PVSio-web to develop a device prototype that can be formally
analysed. The aim is to demonstrate that:

– Emucharts diagrams conveniently hide the technical details of formal languages,
and thus make formal verification technologies more accessible to non-experts of
formal methods.

– PVSio-web enables rapid generation of a realistic prototype that allows develop-
ers to perform an early evaluation of the device, when a physical prototype of the
device is not readily available.

– The VDM-SL model generator enables automatic generation of VDM-SL exe-
cutable models that can be formally analysed within Overture.

6 Paolo Masci, Luis Diogo Couto, Peter Gorm Larsen, and Paul Curzon

Fig. 2: Blueprint of an insulin pump with UP and DOWN buttons.

4.1 Description of the system

The considered system is an insulin pump used to treat type 1 diabetes. The device al-
lows its user to specify therapy parameters such as the amount of insulin to be injected to
keep the blood glucose level under control (bolus dose). The pump is battery-powered,
and is turned on by inserting a battery in to the device.

Its data entry system consists of two buttons (UP and DOWN) and a display — a
blueprint of the device is in Figure 2. Here, we focus on the behaviour of the device
only for data entry of bolus doses. When entering a bolus dose, a click on the UP button
increments the display value by 0•1. Similarly, a click on the DOWN button decrements
the display value by 0•1. The maximum bolus dose is 10 units.

In the following sub-sections, we develop an Emucharts diagram that models the
behaviour of this data entry system. The Emucharts diagram is used within PVSio-web
to drive the behaviour of an interactive prototype based on a PVS model (further details
about how these prototypes are generated can be found in [1, 2]). The same Emucharts
is then used to generate an executable VDM-SL model that can then be further analysed
within Overture.

4.2 Emucharts Diagram

An Emucharts diagram modelling the described behaviour of the device is shown in
Figure 3. The diagram includes two states, on and off, modelling whether the device is
powered on or off. The off state is the initial state. In the diagram, this is represented
using a default initial transition that enters the off state.

A transition turn on changes the device state from off to on. This models the action
of inserting a battery into the device. Similarly, a transition turn off changes the device
state from on to off. This models the action of removing the battery from the device, or
a depleted battery.

Two state transitions click UP model the behaviour of UP button clicks. One transi-
tion models button clicks when the display value is less than 10. In this case, the display
value is incremented by 0•1. The transition condition is therefore display < 10, and the
transition action specifies the new value of the display using the assignment expression
display := display + 1. The other transition is for handling the boundary case at 10. In
this case, a click on the UP button resets the display value to 0.

Two other transitions click DOWN model the behaviour of the DOWN button. One
transition is for values above 0, and decrements the current display value by 0•1. The

Integrating PVSio-web with Overture 7

Fig. 3: Snapshot of the Emucharts Editor while drawing a diagram modelling the be-
haviour of the data entry system described in sub-section 4.1.

other transition is for the boundary case at 0. In this case, a click on the DOWN button
changes the display value to 10 (this makes the behaviour of the DOWN button symmet-
ric with respect to the UP button).

Finally, a variable display is declared in the Emucharts context for modelling the
display value. The type of the variable is real, and the initial value is 0.

4.3 Generating and Analysing an Interactive Prototype

The behaviour modelled with the Emucharts diagram is now used as a basis to generate
a realistic prototype that resembles the look and feel of the final product. This prototype
enables lightweight formal analysis for early evaluation of the device behaviour.

The prototype is generated within PVSio-web using the Prototype Builder front-
end. This is done by loading a realistic picture of the device in the tool, and creating in-
teractive areas over the picture (see Figure 1). Three interactive areas are created in this
case. The first is for the display, and is associated to the Emucharts variable display.
Two more capture the user pressing the buttons in the picture of the device. These inter-
active areas translate the button presses into commands for animating the formal model
associated with the Emucharts diagram. This formal model is automatically generated
from the diagram, and executed within PVS [5] using its the native PVSio [9] animation
environment.

Once the prototype is generated, one can explore the formal model by clicking but-
tons of the device, seeing the results of the interactions on the device display (see Fig-
ure 4). Using the prototype, a lightweight formal analysis can be performed before start-
ing the full formal analysis. For example, one can perform an expert walkthrough [14]

8 Paolo Masci, Luis Diogo Couto, Peter Gorm Larsen, and Paul Curzon

Fig. 4: The insulin pump prototype executed within PVSio-web.

of the device. It is a usability inspection method performed by human-computer inter-
action specialists for identifying issues with the user interface of a system. By exploring
the behaviour of the prototype, for example, the following conceptual issue can be eas-
ily identified with few exploratory input key sequences: when the display is 0 and the
down button is pressed, the display value rolls over to 10. This behaviour is unsafe, as a
single accidental button press while programming the bolus dose could lead to acciden-
tal overdoses [4, 15]. As a matter of fact, a real medical device on the market has been
recalled because of this design issue [16, 17].

It is worth noting that the prototype has been generated without a full model of
the system. Therefore, these prototypes can be generated at the early stages of device
development, allowing developers to identify conceptual design issues in advance, and
fix them before committing to potentially expensive design decisions.

4.4 Generating a VDM-SL Model

The newly developed VDM-SL model generator is now used to generate a VDM-SL
model from the same Emucharts diagram used for the interactive prototype. The gener-
ated model can be imported within Overture for further formal analysis (type checking,
analysis of proof obligations, generation of test cases, etc.). The steps illustrated in Sec-
tion 3 are now illustrated for the diagram. The full VDM-SL model generated from the
diagram is given in the Appendix.

The VDM-SL model generator creates the type definitions first. An enumerated type
MachineState is generated that includes two enumerated constants, one for each state
represented in the Emucharts diagram.⌥
MachineState = <off> | <on>;⌦⌃ ⇧

Listing 1.1: MachineState type

Integrating PVSio-web with Overture 9

A state block EmuchartState is then generated that includes: a field display of
type real, which models the variable defined in the Emucharts context; two fields cur-
rent state and previous state of type MachineState, which store information about the
current and previous active state of the state machine.⌥
state EmuchartState of
current_state: MachineState
previous_state: MachineState
display: real⌦⌃ ⇧

Listing 1.2: VDM-SL model state

A function init is then generated that defines the initial model state. The initial value
of the display is 0, the initial value of the current state is <off >, as specified in the
Emucharts context.⌥
init s == s = mk_EmuchartState(<off>, undefined, 0)⌦⌃ ⇧

Listing 1.3: VDM-SL initial state

Functions representing transitions of the state machine are then generated. Transi-
tion functions with the same name are automatically merged into the body of a single
VDM-SL function. For example, a single function click UP is generated that models
the two click UP transitions specified in the Emucharts diagram.

The body of the generated VDM-SL function is, at the top level, a series of if-
then-else statements. Each conditional statement is generated from a transition function
included in the diagram. The Boolean expressions used in the conditional statement
are based on both the transition conditions specified in the transition labels, and on the
structure of the diagram (in particular, information about which state the transition is
leaving from). For example, a Boolean expression generated for the click UP function
is s.current state = <on> and s.display < 10, as the arrow representing the transition
leaves the on state, and the label of the transition includes a condition display < 10.⌥
click_UP: EmuchartState -> EmuchartState
click_UP(s) ==
if (s.current_state = <on>) and (s.display < 10) then ...
elseif (s.current_state = <on>) and (s.display = 10) then ...
else undefined⌦⌃ ⇧

Listing 1.4: VDM-SL transition function (overall structure)

The body of each conditional block is then generated. Each block always starts with
function leave state. This is an auxiliary function that updates field previous state
of the VDM-SL model state with the label of the state that the transition leaves. Each
block ends with another auxiliary function, enter into, that updates current state

10 Paolo Masci, Luis Diogo Couto, Peter Gorm Larsen, and Paul Curzon

with the label of the state that the transition enters. The actions specified in the Emucharts
diagram are state updates, therefore they are translated using the VDM-SL mu opera-
tor. Consider transition click UP relative to the case when the display is less than 10.
The transition leaves and enters the same state (<on>), and the action specifies that the
display value is incremented by 0.1 when the transition is executed.⌥
... let new_s = leave_state(<on>, s) in let

new_s = mu(new_s, display |-> s.display + 0.1)
in enter_into(<on>, new_s) ...⌦⌃ ⇧

Listing 1.5: VDM-SL transition function (example state update)

Finally, permission functions are automatically generated by the VDM-SL model
generator to restrict the domain of the VDM-SL transition function, and thus enable ver-
ification of pre- and post-conditions. For example, the permission function for click UP
returns the disjunction of all conditions used in the body of the click UP function. This
makes the domain of function click UP explicit, and is used by the VDM interpreter to
perform essential sanity checks related to how the function is used in the model.⌥
per_click_UP: EmuchartState -> bool
per_click_UP(s) ==
((s.current_state = <on>) and (s.display < 10)) or
((s.current_state = <on>) and (s.display = 10));⌦⌃ ⇧

Listing 1.6: VDM-SL permission function

4.5 Analysis in Overture

We now carry out an analysis of the generated VDM-SL model using two features of
Overture: Proof Obligation Generation and Combinatorial Testing [18].

Overture generates Proof Obligations for a VDM model to ensure the internal con-
sistency of the model. Example checks involve assessing the legal use of types and
functions in the model. Besides validating core aspects of the semantics of the VDM-SL
model, in our case the analysis is also useful for validating the correct implementation
of the VDM-SL model generator. Applying the Proof Obligation Generator to the gen-
erated model yields four proof obligations, all of them ensuring legal application of the
various state transition functions. For example, for the VDM-SL operation representing
transition turn on, a proof obligation is generated (see Listing 1.7) to ensure that func-
tion turn on is correctly used according to its permission. This proof obligation, as
well as the others generated for this example, are trivially true, thus confirming that the
generated model is well-formed.⌥
pre_turn_on(EmuchartState) => pre_turn_on(EmuchartState)⌦⌃ ⇧

Listing 1.7: Sample proof obligation to ensure correct use of functions.

Integrating PVSio-web with Overture 11

Fig. 5: The Overture Combinatorial Testing feature.

The Overture Combinatorial Testing tool generates test cases for the formal model
from traces, allowing one to quickly specify and execute multiple usage scenarios. This
can be extremely useful for validating the behaviour of the model against device pro-
totypes or the final product. In Overture, test cases are specified using a trace notation
that is akin to regular expressions. In Listing 1.8 we show an example trace for the
model developed in the previous sections. It specifies that test cases are generated to
explore the following use case: the device is turned on; then, the up and down buttons
are randomly pressed 10 times; and then, the device is turned off. This trace expands to
1024 test cases that ensure all combinations of up and down are explored. The results
for execution of this combinatorial test trace (and others) are shown in Figure 5. Most
tests pass except for 13 which are inconclusive due to violated pre-conditions on the
outside test calls such as attempting to turn off a device that is already off (note also
that 4 tests are skipped because they share a sequence of calls with an inconclusive test
and thus are pointless to execute).⌥
traces

UpDown10:
transition_turn_on();
(transition_click_UP() | transition_click_DOWN()) { 10 };
transition_turn_off();⌦⌃ ⇧

Listing 1.8: Sample regular expression.

12 Paolo Masci, Luis Diogo Couto, Peter Gorm Larsen, and Paul Curzon

5 Concluding Remarks

We have illustrated the results achieved to date on integrating PVSio-web with the Over-
ture platform. The integration allows developers to automatically generate VDM-SL
models from a state machine description created using the PVSio-web Emucharts Edi-
tor. Formal models are thus created without the developer having a deep understanding
of the VDM syntax. Also, because the Emucharts Editor incorporates model genera-
tors for other formal languages (PVS [5], MAL [19], PIM [20]), the developed tool
can be conveniently used to translate VDM-SL state machine models from/to these
other formal languages. Future work will extend this initial integration to give Overture
and PVSio-web users even more benefits. For example, we plan to further extend the
semantics supported by the model generator, e.g., to support diagrams specifying non-
deterministic choices, and hierarchical state machines. Another extension relates to the
ability of importing VDM models that are manually crafted by developers. This will
ease reuse of models and examples already developed by the VDM community. Besides
the Emucharts Editor, we plan to integrate two other components of PVSio-web with
Overture. One component is the PVSio-web Prototype Builder, which handles the exe-
cution of prototypes developed within PVSio-web. The current implementation of this
component uses PVSio as execution environment. We will link the Prototype Builder
to the Overture interpreter. This will allow Overture users to send commands to the
Overture interpreter by interacting with realistic prototypes resembling the real system
being modelled, rather than by typing commands in the Overture interpreter console.
The other component is the PVSio-web Co-Simulator, which enables integrated sim-
ulation of models developed using different modelling and analysis tools. We aim to
explore how this component can be integrated with the VDM tool Crescendo [21] for
collaborative modelling and simulation. Further work is also needed to determine how
best to incorporate PVSio-web within future releases of Overture.
Acknowledgments. This work is part of CHI+MED (EPSRC grant EP/G059063/1).

References
1. Paolo Masci, Patrick Oladimeji, Yi Zhang, Paul Jones, Paul Curzon, and Harold Thimbleby.

PVSio-web 2.0: Joining PVS to Human-Computer Interaction. In 27th International Con-
ference on Computer Aided Verification (CAV2015). Springer, 2015. Tool and application
examples available at http://www.pvsioweb.org.

2. Patrick Oladimeji, Paolo Masci, Paul Curzon, and Harold Thimbleby. PVSio-web: A tool for
rapid prototyping device user interfaces in PVS. In 5th International Workshop on Formal
Methods for Interactive Systems (FMIS2013), 2013.

3. Paolo Masci, Yi Zhang, Paul Jones, Paul Curzon, and Harold Thimbleby. Formal Verification
of Medical Device User Interfaces Using PVS. In ETAPS/FASE2014, 17th International
Conference on Fundamental Approaches to Software Engineering. Springer-Verlag, 2014.

4. Paolo Masci, Patrick Oladimeji, Paul Curzon, and Harold Thimbleby. Tool demo: Us-
ing PVSio-web to demonstrate software issues in medical user interfaces. In 4th Inter-
national Symposium on Foundations of Healthcare Information Engineering and Systems
(FHIES2014), 2014.

5. Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A Prototype Verification System.
In 11th International Conference on Automated Deduction (CADE), volume 607 of Lecture
Notes in Artificial Intelligence, pages 748–752, 1992.

http://www.pvsioweb.org

Integrating PVSio-web with Overture 13

6. Peter G. Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Lausdahl, and Mar-
cel Verhoef. The overture initiative integrating tools for VDM. ACM SIGSOFT Software
Engineering Notes, 35(1):1–6, 2010.

7. Tomohiro Oda and Keijiro Araki. Overview of VDMPad: An Interactive Tool for Formal
Specification with VDM. In Proc. of International Conference on Advanced Software Engi-
neering and Information Systems (ICASEIS), 2013.

8. Tomohiro Oda, Keijiro Araki, and Peter G. Larsen. VDMPad: a Lightweight IDE for Ex-
ploratory VDM-SL Specification. In To appear in Proc. of FME Workshop on Formal Meth-
ods in Software Engineering (FormaliSE), 2015.

9. Cesar Muñoz. Rapid prototyping in PVS. Technical Report NIA Report No. 2003-03,
NASA/CR-2003-212418, National Institute of Aerospace, 2003.

10. Constance Heitmeyer, James Kirby, Bruce Labaw, and Ramesh Bharadwaj. SCR: A toolset
for specifying and analyzing software requirements. In Computer Aided Verification, pages
526–531. Springer, 1998.

11. Lukas Ladenberger, Jens Bendisposto, and Michael Leuschel. Visualising Event-B Mod-
els with B-Motion Studio. In Proceedings of the 14th International Workshop on Formal
Methods for Industrial Critical Systems, pages 202–204. Springer-Verlag, November 2009.

12. David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8(3):231–274, June 1987.

13. Glenn E. Krasner and Stephen T. Pope. A description of the Model-View-Controller user
interface paradigm in the Smalltalk-80 system. Journal of object oriented programming,
1(3):26–49, 1988.

14. Jakob Nielsen. Usability inspection methods. In Conference companion on Human factors
in computing systems, pages 413–414. ACM, 1994.

15. Abigail Cauchi, Andy Gimblett, Harold Thimbleby, Paul Curzon, and Paolo Masci. Safer
5-key number entry user interfaces using differential formal analysis. In BCS-HCI ’12 Pro-
ceedings of the 26th Annual BCS Interaction Specialist Group Conference on People and
Computers, BCS-HCI 2012, 12-14 September 2012, Birmingham, UK, pages 29–38. British
Computer Society, 2012.

16. Medtronic. Important medical device safety information regarding the safe use of
the Medtronic insulin pump. http://www.medtronicdiabetes.com/res/
img/pdfs/Insulin-Delivery-Through-Main-Menu-Button-Keypad_
US-Customer-Letter.pdf, 13 March 2014.

17. US Food and Drug Administration (FDA). Class 2 Recall Medtronic MiniMed Paradigm RE-
ALTime and Paradigm REALTime Revel CGM System and MiniMed 530G System. Manu-
facturer and User Facility Device Experience Database (MAUDE), Recall Event ID 68277,
22 August 2014. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/
cfRES/res.cfm?id=127259.

18. Peter G. Larsen, Kenneth Lausdahl, and Nick Battle. Combinatorial testing for VDM. In
Software Engineering and Formal Methods (SEFM), 2010 8th IEEE International Confer-
ence on, pages 278–285. IEEE, 2010.

19. José C. Campos and Michael D. Harrison. Interaction engineering using the ivy tool. In
Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS09), pages 35–44. ACM, 2009.

20. Judy Bowen and Steve Reeves. Modelling safety properties of interactive medical systems.
In Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS13, pages 91–100. ACM, 2013.

21. Peter G. Larsen, Carl Gamble, Kenneth Pierce, Augusto Ribeiro, and Kenneth Lausdahl.
Support for Co-modelling and Co-simulation: The Crescendo Tool. In Collaborative Design
for Embedded Systems, pages 97–114. Springer, 2014.

http://www.medtronicdiabetes.com/res/img/pdfs/Insulin-Delivery-Through-Main-Menu-Button-Keypad_US-Customer-Letter.pdf
http://www.medtronicdiabetes.com/res/img/pdfs/Insulin-Delivery-Through-Main-Menu-Button-Keypad_US-Customer-Letter.pdf
http://www.medtronicdiabetes.com/res/img/pdfs/Insulin-Delivery-Through-Main-Menu-Button-Keypad_US-Customer-Letter.pdf
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm?id=127259
http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm?id=127259

14 Paolo Masci, Luis Diogo Couto, Peter Gorm Larsen, and Paul Curzon

Appendix: Full VDM-SL Model⌥
module emucharts_MedtronicMinimed530G_VDM
exports all
definitions

types
-- machine states

MachineState = <off> | <on>;
-- emuchart state

state EmuchartState of
current_state: MachineState
previous_state: MachineState
display: real

-- initial state

init s == s = mk_EmuchartState(<off>, undefined, 0) end

functions
-- utility functions

enter_into: MachineState * EmuchartState -> EmuchartState
enter_into(ms, s) == mu(s, current_state |-> ms);
leave_state: MachineState * EmuchartState -> EmuchartState
leave_state(ms, s) == mu(s, previous_state |-> ms);

-- transition functions

per_turn_on: EmuchartState -> bool
per_turn_on(s) == ((s.current_state = <off>));
turn_on: EmuchartState -> EmuchartState
turn_on(s) ==
if (s.current_state = <off>)
then let new_s = leave_state(<off>, s)

in enter_into(<on>, new_s)
else undefined

pre per_turn_on(s);

per_turn_off: EmuchartState -> bool
per_turn_off(s) == ((s.current_state = <on>));
turn_off: EmuchartState -> EmuchartState
turn_off(s) ==
if (s.current_state = <on>)
then let new_s = leave_state(<on>, s)

in enter_into(<off>, new_s)
else undefined

pre per_turn_off(s);

per_click_DOWN: EmuchartState -> bool
per_click_DOWN(s) == ((s.current_state = <on>) and (s.

display > 0)) or ((s.current_state = <on>) and (s.
display = 0));

click_DOWN: EmuchartState -> EmuchartState

Integrating PVSio-web with Overture 15

click_DOWN(s) ==
if (s.current_state = <on>) and (s.display > 0)
then let new_s = leave_state(<on>, s) in let

new_s = mu(new_s, display |-> s.display - 0.1)
in enter_into(<on>, new_s)

elseif (s.current_state = <on>) and (s.display = 0)
then let new_s = leave_state(<on>, s) in let

new_s = mu(new_s, display |-> 10)
in enter_into(<on>, new_s)

else undefined
pre per_click_DOWN(s);

per_click_UP: EmuchartState -> bool
per_click_UP(s) == ((s.current_state = <on>) and (s.display

< 10)) or ((s.current_state = <on>) and (s.display=10));
click_UP: EmuchartState -> EmuchartState
click_UP(s) ==
if (s.current_state = <on>) and (s.display < 10)
then let new_s = leave_state(<on>, s) in let

new_s = mu(new_s, display |-> s.display + 0.1)
in enter_into(<on>, new_s)

elseif (s.current_state = <on>) and (s.display = 10)
then let new_s = leave_state(<on>, s) in let

new_s = mu(new_s, display |-> 0)
in enter_into(<on>, new_s)

else undefined
pre per_click_UP(s);

operations
transition_turn_on: () ==> ()
transition_turn_on() == EmuchartState := turn_on(

EmuchartState)
pre pre_turn_on(EmuchartState);

transition_turn_off: () ==> ()
transition_turn_off() == EmuchartState := turn_off(

EmuchartState)
pre pre_turn_off(EmuchartState);

transition_click_DOWN: () ==> ()
transition_click_DOWN() == EmuchartState := click_DOWN(

EmuchartState)
pre pre_click_DOWN(EmuchartState);

transition_click_UP: () ==> ()
transition_click_UP() == EmuchartState := click_UP(

EmuchartState)
pre pre_click_UP(EmuchartState);

end emucharts_MedtronicMinimed530G_VDM⌦⌃ ⇧

	Integrating the PVSio-web modelling and prototyping environment with Overture
	Introduction
	Emucharts Editor
	The VDM-SL Model Generator
	Example
	Description of the system
	Emucharts Diagram
	Generating and Analysing an Interactive Prototype
	Generating a VDM-SL Model
	Analysis in Overture

	Concluding Remarks

