Spectrum-Based Sequential Diagnosis

Alberto Gonzalez-Sanchez
Department of Software Technology
Delft University of Technology, The Netherlands

Rui Abreu
Department of Informatics Engineering
University of Porto, Portugal

Hans-Gerhard Gross and Arjan J. C. van Gemund
Department of Software Technology
Delft University of Technology, The Netherlands

Abstract

We present a spectrum-based, sequential software debugging approach coined SEQUOIA, that greedily selects tests out of a suite of tests to narrow down the set of diagnostic candidates with a minimum number of tests. SEQUOIA handles multiple faults, that can be intermittent, at polynomial time and space complexity, due to a novel, approximate diagnostic entropy estimation approach, which considers the subset of diagnoses that cover almost all Bayesian posterior probability mass. Synthetic experiments show that SEQUOIA achieves much better diagnostic uncertainty reduction compared to random test sequencing. Real programs, taken from the Software Infrastructure Repository, confirm SEQUOIA’s better performance, with a test reduction up to 80% compared to random test sequences.

Introduction

Multiple observations (tests) are often required to achieve acceptable diagnostic certainty. In sequential diagnosis (SD) one computes the optimal sequence of tests that (on average) minimizes both testing cost C_t, and diagnostic cost C_d, i.e., the subsequent testing effort by the diagnostician to find the actual diagnosis within the list of candidates returned after expending C_t of testing. SD approaches are typically found in the (hardware) systems testing domain where system knowledge is encoded in terms of predetermined test matrices (e.g., (Shakeri et al. 2000)), or in the model-based diagnosis domain where system models are available (e.g., (Kuhn et al. 2008; Feldman, Provan, and van Gemund 2010)). Due to complexity problems, in the software domain, the domain considered in this paper, most model-based approaches are limited to small programs and/or must take a single-fault assumption, and statistical debugging approaches have been typically used instead. To further complicate matters, in (Pattipati and Alexandridis 1988) it was proven that obtaining an optimal sequence of tests for SD, even for a single-fault, is an NP-Hard optimization problem and can only be approximated in practice.

Recently, a Bayesian reasoning approach has been described that considers the program’s component involvement in tests on the one hand (expressed in terms of so-called spectra), and the test outcomes (pass/fail) on the other hand. In (Abreu and van Gemund 2010) it is shown that this spectrum-based reasoning approach offers high accuracy (i.e., low C_d) provided sufficient tests are available. While the above approaches do involve multiple observations (e.g., an entire regression test suite) they do not qualify as SD since the choice of tests is random rather than generating/selecting the next best test based on the diagnosis obtained thus far. Hence, the trade-off between C_d and C_t for random strategies is far from optimal.

In this paper, we present a spectrum-based SD approach and an associated algorithm, dubbed SEQUOIA (SEQuencing iOr dIAgnosis), that greedily computes a sequence out of a large set of given tests that delivers near-optimal diagnostic performance in terms of the decay of C_d as function of the number of tests. Unlike statistical techniques, which have insufficient diagnostic accuracy to select the next best test, we use an approximate, Bayesian reasoning approach of polynomial complexity, which provides the required accuracy at acceptable cost. Similar to approaches based on a test coverage matrix such as (Shakeri et al. 2000), the tests are selected from a fixed test set. Unlike multiple-fault, matrix-based approaches, however, our approximate, Bayesian approach can handle very large system sizes and test set sizes. Furthermore, unlike MBD approaches such as (Kuhn et al. 2008; Feldman, Provan, and van Gemund 2010) no system information is required, other than component test coverage, which is typically known from test execution profiling. We evaluate SEQUOIA for synthetic tests which allow us to assess its performance potential for parameters such as system size, test set size, number of faults, component coverage probability, component fault intermittency, etc. Furthermore, we evaluate SEQUOIA for real-world programs taken from the SIR benchmark suite of programs (Do, Elbaum, and Rothermel 2005). Our results show that especially for the first (most important) tests the decay of diagnostic cost C_d per test of SEQUOIA is significantly better than random.

Spectrum-based Fault Diagnosis

Definition A diagnostic system DS is defined as the triple $DS = \langle SDT, COMPS, OBS \rangle$, where SDT is a propo-
sitional theory describing the behavior of the system, \(COMPS = \{c_1, \ldots, c_m, \ldots, c_M\} \) is a set of components in SDT, of which \(M_f = 0, \ldots, M \) can be simultaneously faulty, and OBS is a set of observable variables in SDT.

With each component \(c_m \in COMPS \) we associate a health variable \(h_m \), which denotes component health. The health states of a component are either healthy (\(h_m = \text{true} \)) or faulty (\(h_m = \text{false} \)).

Definition An h-literal is \(h_m \) or \(\neg h_m \) for \(c_m \in COMPS \).

Definition An h-clause is a disjunction of h-literals containing no complementary pair of h-literals.

Definition A conflict of \((SDT, COMPS, OBS) \) is an h-clause of negative h-literals entailed by \(SDT \cup OBS \).

Definition Let \(I_N \) and \(I_P \) be two disjoint sets of components indices, faulty and healthy, respectively, such that \(COMPS = \{c_m \mid m \in I_N \cup I_P\} \) and \(I_N \cap I_P = \emptyset \). We define \(d(I_N, I_P) \) as the conjunction \(\bigwedge_{m \in I_N} \neg h_m \land \bigwedge_{m \in I_P} h_m \).

A diagnosis candidate is a sentence describing one possible state of the system, where this state is an assignment of the status healthy or not healthy to each system component.

Definition A diagnosis candidate \(d(I_N, I_P) \) for DS given an observation \(obs \) over variables in OBS is such that
\[
SDT \land obs \land d(I_N, I_P) \not\subseteq \bot
\]
In the remainder we refer to \(d(I_N, I_P) \) simply as \(d \), which we identify with the set \(I_N \) of indices of the negative literals.

Definition A diagnostic report is an ordered set \(D = \langle d_1, \ldots, d_k, \ldots, d_K \rangle \) of \(K \) diagnosis candidates, sorted by posterior probability \(\Pr(d_k) \), for which \(SDT \land obs \land d_k \not\subseteq \bot \).

Diagnostic performance is expressed in terms of a cost metric \(C_d \) that measures the excess effort incurred in finding all components at fault (residual diagnostic effort). \(C_d \) measures wasted effort, independent of the number of faults \(M_f \) in the program, to enable an unbiased evaluation of the effect of \(M_f \) on \(C_d \). Thus, regardless of \(M_f, C_d = 0 \) represents an ideal diagnosis technique (all \(M_f \) faulty components on top of the ranking, no effort wasted on testing other components to find they are not faulty), while \(C_d = M - M_f \) represents the worst case (testing all \(M - M_f \) healthy components until arriving at the \(M_f \) faulty ones). This model is inspired by similar ones used in previous work (Abreu and van Gemund 2010). For example, consider an \(M = 5 \) component program with the following diagnostic report \(D = \langle\{4, 5\}, \{4, 3\}, \{1, 2\}\rangle \), while \(c_1 \) and \(c_2 \) are actually faulty. The first diagnosis candidate leads the developer to inspect \(c_4 \) and \(c_5 \). As both components are healthy, \(C_d \) is increased by 2. The new information that \(\Pr(\{4, 5\}) = 0 \) leads to discarding \(\{4, 3\} \) (\(c_4 \) can no longer be part of a multiple fault). The next components to be inspected are \(c_1 \) and \(c_2 \). As they are both faulty, no more effort is wasted, and consequently, \(C_d = 2 \).

Spectrum-based Candidate Generation

In the production of the consistent candidates for \(D \), typical search algorithms are, e.g., GDE (de Kleer and Williams 1987), SAFARI (Feldman, Provan, and van Gemund 2010). In the case of spectrum-based candidate generation for SD we use a minimal hitting set algorithm (MHS) (e.g. (Abreu and van Gemund 2009; de Kleer and Williams 1987)) to compute a set of minimal diagnoses (candidates that are not subsumed by another of lower fault cardinality, i.e., number of negative h-literals \(M_f = |d| \)). A minimal diagnosis is a minimal hitting set over all conflicts.

In software, a test produces a sequence of component activity (e.g., statement execution) that results in a particular return value. The result of a process is either nominal ("pass") or an error ("fail").

Definition Let \(S_f = \{c_m | c_m \text{ involved in a failing process}\} \), and let \(S_p = \{c_m | c_m \text{ involved in a passing process}\} \), denote the fail set and pass set, respectively.

In software, fail and pass sets are also known as (execution) spectra (Abreu, Zoeteweij, and van Gemund 2007; Harrold et al. 1998), and originate from dynamically profiling the software components (e.g., statements or modules) during each program run, hence the name spectrum-based diagnosis.

Definition Let \(N \) denote the number of passing and failing processes (tests). Let \(N_f \) and \(N_p \), \(N_f + N_p = N \), denote the number of fail and pass sets (spectra), respectively. Let \(A \) denote the \(N \times M \) activity matrix of the system, where \(a_{nm} \) denotes whether component \(m \) was involved in process \(n \) (\(a_{nm} = 1 \)) or not (\(a_{nm} = 0 \)). Let \(e \) denote the error vector, where \(e_n \) signifies whether process \(n \) has passed (\(e_n = 0 \)) or failed (\(e_n = 1 \)).

In spectrum-based diagnosis, each component \(c_m \) is modeled by the abstract, weak fault model (WFM)
\[
h_m \implies (ok_{m, inp} \implies ok_{m, out})
\]
where \(ok_{m, inp} \) and \(ok_{m, out} \) denote the (binary) correctness of the component’s input and output. If the output is not correct, we can be sure that \(c_m \) is not healthy. However, the fact that the output is correct does not guarantee that \(c_m \) is healthy.

In our software setting, we know test inputs are always correct, but output correctness depends on the presence of bugs in the program and whether that specific input triggers the bug or not. Some inputs can be coincidentally correct, depending on the nature of the program and the test. For example, consider the integer division \(x / 10 \), where \(10 \) is a fault that should have been 15. Consider two input values \(x = 15 \), and \(x = 20 \), respectively. In the first case, the component produces a correct output \((15/10 = 15/15 = 1)\), whereas in the second case the component fails \((20/10 = 2 \neq 20/15 = 1)\). Hence, the division component (statement) exhibits intermittent failure behavior.

We compute the candidates by applying the STACCATO MHS algorithm (Abreu and van Gemund 2009) to the fail and the pass sets. STACCATO computes MHS solutions in approximate order of posterior probability, exploiting the
pass sets to optimize search order. As a result, all probability mass is concentrated in the first \(\lambda \) MHS solutions in \(D \), where even small \(\lambda (O(M)) \) produces no difference in terms of \(C_d \) compared to a non-truncated diagnosis \(D \) (Abreu and van Gemund 2009).

Candidate Probability Computation

Given the multitude of candidates that are typically generated, the ranking within \(D \) induced by posterior probability computation is critical to diagnostic accuracy. Let \(Pr(m) = p_m \) denote the prior probability that a component \(c_m \) is at fault. Assuming components fail independently the prior probability of a candidate \(d_k \) is given by

\[
Pr(d_k) = \prod_{m \in I_N} Pr\{m\} \cdot \prod_{m \in I_F} (1 - Pr\{m\}) \quad (1)
\]

For each observation \(obs_n = \{A_{n*}, e_n\} \) the posterior probabilities are updated according to Bayes’ rule

\[
Pr(d_k|obs_n) = \frac{Pr(obs_n|d_k) \cdot Pr(d_k)}{Pr(obs_n)} \quad (2)
\]

The initial value \(Pr(d_k|obs_0) \) (i.e., no observations are available) corresponds to the prior \(Pr(d_k) \). The denominator \(Pr(obs_n) \) is a normalizing term that is identical for all \(d_k \) and thus needs not be computed directly. \(Pr(obs_n|d_k) \) is defined for intermittent components by

\[
Pr(obs_n|d_k) = \begin{cases}
\prod_{c_m \in d_k \land \alpha_{nm} = 1} g_m & \text{if } e_n = 0 \\
1 - \prod_{c_m \in d_k \land \alpha_{nm} = 1} g_m & \text{if } e_n = 1
\end{cases} \quad (3)
\]

where \(g_m \) models the component’s failure intermittency, i.e., probability that a faulty component will not cause a failure when covered in a test (a false negative). This assumes an or-model: the test will fail when either faulty component fails (an or-model) (Kuhn et al. 2008; Abreu, Zoeteweij, and van Gemund 2009). In this paper we will assume the \(g_m \) are available, either by definition, or from prior mutation analysis (Voas 1992).

Example We will illustrate Bayesian diagnosis with one example. Let us assume the function in Table 1, composed of 8 source code statements. We have a set of 6 available test inputs, that cover different statements of the program, as per matrix \(A \). For simplicity, we will assume that all statements have identical prior probability \(p_m = 0.1 \) (this prior is much lower in real programs, but allows the numbers in the example to be easier to understand), and that there is no intermittency (\(g_m = 0 \)).

<table>
<thead>
<tr>
<th>Program: Character Counter</th>
<th>t₁</th>
<th>t₂</th>
<th>t₃</th>
<th>t₄</th>
<th>t₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>function count(char * s) {</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>int let, dig, other, i;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>while(c = s[i++]) {</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>if ('A'<=c && 'Z'>=c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>let += 1;</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>elsif ('0'<=c && '9'>=c)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dig += 2; /* FAULT */</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>elsif (!isprint(c))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other += 2; /* FAULT */</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
| printf("%d %d %d
", | 1 | 1 | 1 | 1 | 1 |
| let, dig, others);} | | | | | |

Table 1: Example program and activity matrix \(A \) (transposed for readability)

Both double-fault candidates respectively. During the Bayesian update, the posterior probabilities of each candidate would evolve, until only \{3, 5\} and \{5, 7\} remain as candidates with non-null probability \(Pr\{3, 5\} = Pr\{5, 7\} = 0.5 \). The remaining MHS candidates are discarded at some test. For example, \{4\} gets discarded in \(t_3 \) since \(Pr(0|\{4\}) = 0 \).

The final ranking is \(D = \{\{5, 7\}, \{3, 5\}\} \). Since both candidates have equal probability, there is a 50% chance of inspecting \(c_3 \), therefore the residual diagnostic effort value is \(C_d = 0.5 \cdot 1 + 0.5 \cdot 0 = 0.5 \).

SEQUOIA

The diagnostic procedure outlined in the previous section does not consider how \(A \) is composed. \(A \) is merely processed in terms of MHS candidate generation and the subsequent, Bayesian posterior probability computation per candidate. From SD perspective, this would correspond to a random (ordering of rows), i.e., a passive approach.

SEQUOIA is a spectrum-based SD algorithm that greedily selects the next best test (row) from \(A \) based on the diagnosis obtained thus far. As our principal optimization target \(C_d \) cannot be computed (since we do not know the actual health state \(d_s \)), we can only reason in terms of the expectation \(E[C_d] \). Experiments have shown that the entropy \(H \) of \(D \) is a very good predictor for \(E[C_d] \) as it expresses the uncertainty in \(D^2 \). Consequently, we shall use the entropy drop \(\Delta H \) (aka information gain (Johnson 1960)) of a diagnosis \(D \) as test selection criterion. The next best test is the one that yields the highest \(\Delta H \) averaged over the two possible test outcomes (pass/fail), according to

\[
\Delta H(D_{n-1}, i) = H(D_{n-1}) - Pr(e_i = 0) \cdot H(D_n|e_i = 0) - Pr(e_i = 1) \cdot H(D_n|e_i = 1)
\]

where \(D_n|e_i = 0 \) represents the updated probabilities of the current diagnosis \(D \) if test \(i \) passes, \(D_n|e_i = 1 \) if it fails. Both \(D_n|e_i = 0 \) and \(D_n|e_i = 1 \) consider only the Bayesian update, without re-calculating the MHS, since otherwise the double-fault candidates respectively. During the Bayesian update, the posterior probabilities of each candidate would evolve, until only \{3, 5\} and \{5, 7\} remain as candidates with non-null probability \(Pr\{3, 5\} = Pr\{5, 7\} = 0.5 \). The remaining MHS candidates are discarded at some test. For example, \{4\} gets discarded in \(t_3 \) since \(Pr(0|\{4\}) = 0 \).

The final ranking is \(D = \{\{5, 7\}, \{3, 5\}\} \). Since both candidates have equal probability, there is a 50% chance of inspecting \(c_3 \), therefore the residual diagnostic effort value is \(C_d = 0.5 \cdot 1 + 0.5 \cdot 0 = 0.5 \).

SEQUOIA

The diagnostic procedure outlined in the previous section does not consider how \(A \) is composed. \(A \) is merely processed in terms of MHS candidate generation and the subsequent, Bayesian posterior probability computation per candidate. From SD perspective, this would correspond to a random (ordering of rows), i.e., a passive approach.

SEQUOIA is a spectrum-based SD algorithm that greedily selects the next best test (row) from \(A \) based on the diagnosis obtained thus far. As our principal optimization target \(C_d \) cannot be computed (since we do not know the actual health state \(d_s \)), we can only reason in terms of the expectation \(E[C_d] \). Experiments have shown that the entropy \(H \) of \(D \) is a very good predictor for \(E[C_d] \) as it expresses the uncertainty in \(D^2 \). Consequently, we shall use the entropy drop \(\Delta H \) (aka information gain (Johnson 1960)) of a diagnosis \(D \) as test selection criterion. The next best test is the one that yields the highest \(\Delta H \) averaged over the two possible test outcomes (pass/fail), according to

\[
\Delta H(D_{n-1}, i) = H(D_{n-1}) - Pr(e_i = 0) \cdot H(D_n|e_i = 0) - Pr(e_i = 1) \cdot H(D_n|e_i = 1)
\]

where \(D_n|e_i = 0 \) represents the updated probabilities of the current diagnosis \(D \) if test \(i \) passes, \(D_n|e_i = 1 \) if it fails. Both \(D_n|e_i = 0 \) and \(D_n|e_i = 1 \) consider only the Bayesian update, without re-calculating the MHS, since otherwise the
algorithm would require \(N^2 \) MHS calculations instead of \(N \). \(H(D_n) \) is defined as

\[
H(D_n) = -\sum_{d_k \in D_n} \Pr(d_k|\text{obs}_n) \cdot \log_2(\Pr(d_k|\text{obs}_n))
\] (4)

Conceptually, when considering all possible test outcome combinations, a test suite prioritized for diagnosis is a binary tree with \(O(2^N) \) nodes. However, if performed on line, only the \(O(N) \) nodes corresponding to the current test path are expanded. In theory, given our Bayesian approach to multiple, intermittent fault diagnosis, computing \(D \) has \(O(2^M) \) cost. Bearing in mind the fact that each step in SD involves selecting the best test out of \(N \) candidates (i.e., computing \(N \) diagnoses per step), finding a diagnostic technique that pairs accuracy with sufficiently low complexity is a formidable challenge in SD.

Example Let us calculate \(\Delta H \) for test \(t_3 \). In our example system, after \(t_1 \) and \(t_2 \) have been executed, the MHS algorithm and Bayesian update produce \(D_3 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{8\}, \{5, 6\}, \{5, 7\}\} \), with \(\Pr(d_k) = 0.199 \) for the single-fault candidates, and \(\Pr(d_k) = 0.002 \) for the double-fault candidates. \(H(D_3) = 2.35 \) should \(t_3 \) fail, candidates \(\{3\} \) and \(\{5, 7\} \) would be dropped from \(D \) since \(\Pr(e = 1|\{3\}) = \Pr(e = 1|\{5, 7\}) = 0 \). The probability of a failure is \(\Pr(e = 1) = 0.199 + 0.002 = 0.798 \). The updated probability of \(\{1\}, \{2\}, \{4\}, \{8\} \), is \(\Pr(d_k) = 0.249 \) and \(\Pr(e = 1) = 0.004 \). The entropy \(H(D_3|e = 1) = 2.06 \) on the other hand, should \(t_3 \) pass, the only remaining candidates in \(D \) would be precisely \(\{3\} \) and \(\{5, 7\} \). The probability of the test passing is \(\Pr(e = 0) = 1 - \Pr(e = 1) = 0.202 \). The updated candidate probabilities would be \(\Pr(\{3\}) = 0.98, \Pr(\{5, 7\}) = 0.02 \), and the entropy \(H(D_3|e = 0) = 0.14 \). Known all these values, we can calculate the information gain of \(t_3 \) applied to \(D_2 \) as

\[
\Delta H(D_2, 3) = 2.35 - 0.798 \cdot 2.06 - 0.202 \cdot 0.14 = 0.677
\]

If instead of choosing \(t_3 \) we chose \(t_4 \), the information gain would be 0, since we are sure that \(t_4 \) will fail (hence no update of \(D \) will happen).

\[
\Delta H(D_2, 5) = 2.35 - 1 \cdot 2.35 - 0.0 \cdot 0.00 = 0.00
\]

Approximate Information Gain

From our choice of STACCATO, it would seem that this MHS algorithm is a good candidate to generate \(D \) as, in combination with the Bayesian posterior update scheme, it pairs good diagnostic accuracy with low cost. However, while diagnostic reports comprising minimal diagnoses generally have high practical utility in fault localization, they have limited use in SD. Consider the matrix \(A \) in our example system in Table 1. After the first test observation, the activity matrix and error vector are composed by only one observation

\[
\begin{array}{cccccccccc}
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}
\]

An MHS algorithm will return the diagnosis \(D = \{\{1\}, \{2\}, \{3\}, \{4\}, \{6\}, \{7\}, \{8\}\} \), where all candidates have probability 0.142. This diagnosis has a number of problems.

1. \(c_5 \) is missing in all the candidates, and the actual candidate, \(\{5, 7\} \), is not even being considered. This severely affects diagnostic effort.

2. The entropy of the minimal \(D \) is \(H = 2.8 \), when in reality, if we considered a full \(D \) with all \(2^8 \) candidates, the entropy would be \(H = 4.85 \).

3. Since information gain is computed without re-calculating the MHS, if the test fails, many of the low-cardinality candidates disappear from the MHS. They should be replaced by higher cardinality candidates, but the IG calculation does not consider these candidates and will produce large errors.

In a full \(D \) setting, \(H(D) = 4.85 \) as we have seen. If \(t_2 \) passes, \(H(D|e = 0) = 1.24 \), with \(\Pr(e = 0) = 0.19 \). If \(t_2 \) fails, \(H(D|e = 1) = 4.83 \), with \(\Pr(e = 1) = 0.81 \). The information gain value is then \(IG_{\text{full}} = 0.70 \).

In an MHS setting, \(H(D) = 2.8 \). If \(t_2 \) passes, \(H(D|e = 0) = 1.00 \), with \(\Pr(e = 0) = 0.28 \). If \(t_2 \) fails, \(H(D|e = 1) = 2.32 \), with \(\Pr(e = 1) = 0.72 \). The information gain value is then \(IG_{\text{MHS}} = 0.84 \). It can be seen how this test is assigned an IG value with 20% error.

It is clear that both the quality of the diagnosis and H computation are compromised due to the fact that essential, non-minimal candidates in \(D \) are missing. While MHS is appropriate in a passive diagnosis setting where many observations are already available, in an active diagnosis setting, especially at the beginning, non-minimal diagnosis candidates, which still contain a large probability mass, are crucial.

As computing all non-minimal hitting sets in \(D \) is exponentially complex, we present an approximation, based on extending the MHS solutions returned by STACCATO with a limited set of candidates that are subsumed by the MHS candidates. The candidates that are added are the MHS candidates extended with one additional component (high posterior). Because of this limitation, we refer to this extension as first-order approximation of the entire non-minimal hitting set in \(D \).

In the above example, after the first test the initial MHS would be extended to contain also additional double-faults, and the value of entropy would be corrected to \(H(D) = 4.31 \). If \(t_2 \) passes, \(H(D|e = 0) = 1.24 \), with \(\Pr(e = 0) = 0.21 \). If \(t_2 \) fails, \(H(D|e = 1) = 4.19 \), with \(\Pr(e = 1) = 0.79 \). The information gain value is then \(IG_{\text{HS}1} = 0.74 \), which, while still not totally precise, has only 5% error.

Optimality Figure 1 shows the evolution of \(H \) versus \(i \) for a randomly generated \(A \) with \(N = 150 \), \(M = 10 \), \(M_f = 3 \), \(y_m = U(0, 1) \). Three plots are shown, i.e., optimal \(H \) for the complete \(D \) with all non-minimal candidates (“OPT”), the first-order approximation (“HS1”), and the original MHS-based \(D \) (“MHS”), respectively. The results clearly show that a first-order approximation already delivers good accuracy, nearly as good as the optimal. This is significant since the cost of generating first-order subsumptions is non-negligible (in this example approximately 100 additional candidates are generated per MHS).
Algorithm
Algorithm 1 describes the SEQUOIA algorithm. The algorithm takes as arguments the set of components \(c_m \) and the associated priors \(p_j \) and failure intermitencies \(g_m \), the test matrix \(A \), and test costs, \(C_n \), and two entropy estimation parameters: the maximum number of minimal diagnosis candidates \(\lambda \) as generated by STACCATO, and the maximum number of non-minimal candidates \(\gamma \) subsequently generated by the I-th order hitting set expansion.

Algorithm 1 SEQUOIA

\[
\begin{align*}
 &\text{procedure SEQUOIA} (\text{COMPS, } A, C, \lambda, \gamma) \\
 &T \leftarrow \{1, \ldots, N\} \\
 &A' \leftarrow \emptyset \\
 &e \leftarrow \emptyset \\
 &D, PrD \leftarrow \text{INITIALD} (\text{COMPS, } \gamma) \\
 &\text{while } T \neq \emptyset \text{ do} \\
 &\quad i \leftarrow \arg \max_{i \in \text{SAMPLE}(T)} \frac{\Delta H(D, i)}{C_i} \\
 &\quad e_i \leftarrow \text{RUNTEST}(i) \\
 &\quad A' \leftarrow A' \cup [A_i] \\
 &\quad e \leftarrow e \bigcup e_i \\
 &\quad D \leftarrow \text{STACCATO}(A', e, \lambda) \\
 &\quad D \leftarrow \text{EXPANDSUBSUMED}(D, \text{COMPS, } \gamma) \\
 &\quad \text{for all } d_k \in D \text{ do} \\
 &\quad \quad PrD[d_k] \leftarrow \text{BAYESUPDATE}(d_k, A', e) \\
 &\quad T \leftarrow T \setminus \{i\}
\end{align*}
\]

\(T \) represents the index set of the available tests. \(A' \) (initially empty) represents the version of \(A \) whose rows are sorted by the sequencing algorithm, and \(e \) stores the pass/fail outcomes of the tests. The \(\text{INITIALD} \) function initializes \(D \) to the first \(\gamma \) candidates in descending order of posterior probability, each \(d_k \) probability is stored in the array \(PrD \).

The main loop performs the test sequencing. First, a test is selected from a subset of \(\sigma \) tests (SAMPLE) that yields the highest information gain per unit of cost \((C_i) \) represents the cost of each test). Merely considering a subset (e.g., \(\sigma = 100 \)) instead of all available tests \((O(N)) \) yields a substantial gain, while the sacrifice in optimality is small\(^3\). Next, the test is executed based on the current \(D \) and \(PrD \).

The selected test and its outcome are appended to \(A' \) and \(e \) (the \(\| \) operators denote appending a matrix row, and vector element, respectively). Second, \(D \) is updated by the STACCATO algorithm, and subsequently extended to contain the first order subsumed (non-minimal) candidates by \(\text{EXPANDSUBSUMED} \). In order to keep complexity under control, only the first \(\lambda \) minimal candidates are generated. Likewise, only the first \(\gamma \) first-order subsumed candidates are generated. Third, the probabilities of the newly obtained candidates are calculated by the \(\text{BAYESUPDATE} \) function.

Finally, the selected test (index) \(i \) is removed from the set of available tests \(T \).

Theoretical Evaluation

In order to assess the performance potential of our SD approach we generate synthetic observations based on sample \((A, e) \) generated for various values of \(N, M \), and number of injected faults \(M_f \) to study the effect of the various parameters in a controlled setting.

Component activity \(a_{nm} \) is sampled from a Bernoulli distribution with parameter \(\rho \), i.e., the probability a component is involved in a row of \(A \) equals \(\rho \). All test costs are equal. For the \(M \) components we also set \(g_m = g \). Thus the probability of a component being involved and generating a failure equals \(\rho \cdot (1 - g) \). A row \(n \) in \(A \) generates an error \((e_n = 1) \) if at least 1 of the \(M_f \) components generates a failure (or-model). Measurements for a specific scenario are averaged over 1,000 sample matrices, yielding a coefficient of variance of approximately 0.02.

Figure 2 shows the evolution of relative diagnostic cost \(C_g/(M - M_f) \) of SEQUOIA (SEQ) and random sequencing (RND) versus the number of tests, for \(M = 100 \) components with \(M_f = 3, 5 \), respectively. The matrix comprises \(N = 500 \) tests, although we prioritize only the first 100. SEQUOIA’s parameters are set to \(\lambda = M \) and \(\gamma = 10 \cdot M \).

The plots clearly show the advantage of SD compared to random selection (i.e., just selecting the next row in the matrix without applying any knowledge on the current diagnostics and information gain per test). In particular, the reduction of tests required for acceptable diagnostic accuracy is dramatically less.
Empirical Evaluation

In this section, we evaluate SEQUOIA for the Siemens benchmark set (Hutchins et al. 1994) and three Unix programs from the SIR (Do, Elbaum, and Rothermel 2005) repository. Table 2 lists some information about the programs, where M corresponds to the number of lines of code (components in this context).

Experimental Setup

For our experiments, we inject arbitrary combinations of multiple faults. For this purpose, we generate random faults in the code by applying mutation operators used in mutation testing. We will restrict our experiments to systems with either 1 or 3 faults to avoid raising the fault density to unrealistic levels in software (above 10 faults per KLOC). We compare random ordering (RND), SEQUOIA with minimal diagnoses (MHS), and SEQUOIA with first-order subsumption (SEQ).

The coverage matrices A are obtained by recording test coverage, and the output of a reference implementation used as test oracle to determine the test outcome. The test costs C_n correspond to the execution time of tests. The prior fault probability of statements in our experiments is set to $p_m = 0.01$, corresponding to the aforementioned 10 faults per KLOC fault density. The intermittency g_m values (per program the average g value over the various seeded faults is shown in Table 2) were calculated using a mutation study similar to (Rothermel et al. 2001). To discard the effect of errors in the mutation study we performed a second experiment with simulated error vectors (described later on). As with our theoretical evaluation, SEQUOIA’s parameters are set to $\lambda = M$ and $\gamma = 10 \cdot M$. Each point is averaged over 100 different runs.

Performance Results

Figure 3 shows the evolution of the relative diagnostic cost for $M_f = 1$ and $M_f = 3$. It is clear that the decay of C_d for SEQUOIA is much better than for random test selection. MHS is slightly better than SEQ for $M_f = 1$ since single faults are better diagnosed without D expansion. However, the moment M_f increases, it can be seen that MHS performs even worse than RND. Due to space limitations, we do not show the plots for all programs. Rather, we summarize the performance results in terms of the area under the SEQUOIA and RND curve for C_d above the asymptote for large N (which is determined by the program and fault seeding, rather than a diagnostic algorithm), according to

$$S = \sum_{n=1}^{N} \left(\frac{C_d(n-1) - C_d(N)}{M - M_f} \cdot C_i \right)$$

Table 2 shows the results for $M_f = 1$, and $M_f = 3$, for (1) simulated test outcomes, and (2) actual outcomes (according to the test suite’s test oracle). In the simulated case, the test outcome is computed (drawn) according to the g_m estimates used in SEQUOIA in conjunction with the or-model (Eq. 3), in order to eliminate the effects of imperfect intermittency estimation.

For the simulations, SEQUOIA clearly improves over random ordering. However, this is not always true when the real test case outcomes are used. For $M_f = 3$ we see how the improvements achieved by SEQUOIA is consistently lower than in the simulations, and how in the real cases of tcas and tot_info SEQUOIA performs worse. In these cases the estimation of g_m is poor and causes SEQUOIA to make wrong decisions. Since RND is able to attain a good final C_d, these two cases highlight the fact that sequencing performance (the IG heuristic) is affected much more by intermittency estimation errors than the Bayesian update itself.

For tcas the performance is even worse because D contains too large a quantity of equal minimal diagnoses (so-called ambiguity groups) that have relatively high posterior probability. Even the 1^{st}-order expansion of D cannot avoid a substantial loss of information that causes frequent underestimation of the failure probabilities. As a result, SEQUOIA will erroneously compensate by selecting tests that include too many components, causing loss of diagnostic power. Note, however, that this situation can be easily detected, and
switching at this point from IG to RND mode completely solves this performance problem. In fact, a hybrid solution where IG is used for the first tests (where \(C_d \) decay is large), eventually switching to random mode, offers the best of both worlds.

Related Work

An early example related to SD is found in (de Kleer and Williams 1987) which presents a sequential probing strategy to reduce diagnostic entropy. Apart from the fact that our entropy computation is less complex, we consider tests rather than probes, typical of SD, which assumes that applying test vectors to a closed system are the only way of accessing system information (a test can be seen as a probe, but computing a test that will manifest a certain internal variable is not the same problem).

Classical examples of SD are found in (Shakeri et al. 2000; Raghavan, Shakeri, and Pattipati 1999; Tu and Pattipati 2003; Kundackcioglu and Unluyurt 2007). Similar to spectrum-based approaches, a fault matrix is used that encodes per test which components may be at fault when the test fails (essentially \(A \), extended with a cost per test). While the work includes non-unit test cost, it focuses on single-fault diagnosis, which is highly unrealistic considering the large systems we are targeting. Some extensions to multiple-faults are known, but no solutions to either intermittent behavior and the associated, exponential explosion have been published so far.

Recently, two model-based approaches to SD have been published, referred to as Active Diagnosis (Kuhn et al. 2008), and Active Testing (Feldman, Provan, and van Gemund 2009). Both approaches differ from ours that system information needs to be coded in terms of a model instead of just a matrix that represents a projection in terms of test coverage information. As a result, the tests that can be computed are not restricted to the \(N \) tests possible in matrix approaches. Another advantage is that the observations generated by the tests offer more information than the binary pass/fail outcomes, offering potentially higher decay rates. Being full-fledged, model-based approaches, however, for the very large (software) systems we consider, the computational costs would be prohibitive.

Conclusion

In this paper we have presented a spectrum-based sequential diagnosis approach coined SEQUOIA, that greedily selects tests out of a suite of tests to narrow down the set of diagnostic candidates with a minimum number of tests. To achieve polynomial complexity SEQUOIA uses an approximate information gain computation approach. Synthetic data shows, that the dynamic selection of the next best test based on the observations made so far, allows SEQUOIA to achieve much better decay of diagnostic uncertainty compared to random test sequencing. Real programs also show that SEQUOIA has better performance, except when the input intermittency parameters are erroneous or the diagnosis involves ambiguity sets that are too large for the entropy estimation to handle. Future work therefore includes solving this problem by expanding the MHS in order of posterior probability (which is currently ignored in our approach).
Supported by the Poseidon project of the Embedded Systems Institute (ESI), The Netherlands and the Dutch Ministry of Economic Affairs (BSIK03021).

References
Rothermel, G.; Untch, R. H.; Chu, C.; and Harrold, M. J. 2001. Prioritizing test cases for regression testing. IEEE TSE.