Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Facts & Numbers
000
Presentation

High-Assurance Software

HASLab is focused on the design and implementation of high-assurance software systems: software that is correct by design and resilient to environment faults and malicious attacks. 

To accomplish this mission, HASLab covers three main competences — Cybersecurity, Distributed Systems, and Software Engineering — complemented by other competences such as Human-Computer Interaction, Programming Languages, or the Mathematics of Computing. 

Software Engineering – methods, techniques, and tools for rigorous software development, that can be applied to the internal functionality of a component, its composition with other components, as well as the interaction with the user.

Distributed Systems – improving the reliability and scalability of software, by exploring properties inherent to the distribution and replication of computer systems.

Cybersecurity – minimize the vulnerability of software components to hostile attacks, by deploying structures and cryptographic protocols whose security properties are formally proven.

Through a multidisciplinary approach that is based on solid theoretical foundations, we aim to provide solutions — theory, methods, languages, tools — for the development of complete ICT systems that provide strong guarantees to their owners and users. Prominent application areas of HASLab research include the development of safety and security critical software systems, the operation of secure cloud infrastructures, and the privacy-preserving management and processing of big data.

060

Projects

exaSIMPLE

exaSIMPLE: A Hybrid ML-CFD SIMPLE Algorithm for the Exascale Era

2024-2025

Saude24GB

Linha de Saúde 24h da Guiné-Bissau

2024-2024

EPICURE

High-level specialised application support service in High-Performance Computing (HPC)

2024-2028

TwinEU

Digital Twin for Europe

2024-2026

HANAMI

Hpc AlliaNce for Applications and supercoMputing Innovation: the Europe - Japan collaboration

2024-2026

ENSCOMP3

Ensino de Ciência da Computação nas Escolas 3

2023-2025

AzDIH

Azores Digital Innovation Hub on Tourism and Sustainability

2023-2025

PFAI4_4eD

Programa de Formação Avançada Industria 4 - 4a edição

2023-2023

ATE

Alliance for Energy Transition

2023-2025

Green_Dat_AI

Energy-efficient AI-ready Data Spaces

2023-2025

EuroCC2

National Competence Centres in the framework of EuroHPC Phase 2

2023-2025

fMP

Formação de Introdução à utilização de recursos HPC (Técnicas básicas de Programação Paralela)

2022-2022

AURORA

Deteção de atividade no interior do veículo

2022-2023

NewSpacePortugal

Agenda New Space Portugal

2022-2025

ATTRACT_DIH

Digital Innovation Hub for Artificial Intelligence and High-Performance Computing

2022-2025

BeFlexible

Boosting engagement to increase flexibility

2022-2026

ENERSHARE

European commoN EneRgy dataSpace framework enabling data sHaring-driven Across- and beyond- eneRgy sErvices

2022-2025

Gridsoft

Parecer sobre a implementação de software para redes elétricas inteligentes

2022-2022

PFAI4_3ed

Programa de Formação Avançada Industria 4 - 3a edição

2022-2022

THEIA

Automated Perception Driving

2022-2023

SpecRep

Constraint-based Specification Repair

2022-2023

IBEX

Métodos quantitativos para a programação ciber-física: Uma abordagem precisa para racicionar sobre imprecisões na computação ciber-física

2022-2024

FLEXCOMM

Towards Energy-aware Communications: Connecting the power grid and communication infrastructure

2022-2023

STDCNCS

Desenvolvimento de estudo sobre a comunidade de cibersegurança em Portugal, no âmbito do Observatório de Cibersegurança

2021-2023

Sustainable HPC

Computação de elevado desempenho sustentável

2021-2025

CircThread

Building the Digital Thread for Circular Economy Product, Resource & Service Management

2021-2025

PassCert

Exploring the Impact of Formal Verification on the Adoption of Password Security Software

2021-2022

IoT4Distribuicao

Análise de Requisitos e Especificação Funcional de uma Arquitetura Distribuída baseada em soluções IoT para a Gestão e Controlo da Rede de Distribuição

2021-2023

RISC2

A network for supporting the coordination of High-Performance Computing research between Europe and Latin America

2021-2023

CloudAnalytics4Dams

Gestão de Grandes Quantidades de Dados em Barragens da EDP Produção

2021-2021

PAStor

Programmable and Adaptable Storage for AI-oriented HPC Ecosystems

2020-2021

PFAI4.0

Programa de Formação Avançada Industria 4.0

2020-2021

Collaboration

Collaborative Visual Development

2020-2021

AIDA

Adaptive, Intelligent and Distributed Assurance Platform

2020-2023

BigHPC

A Management Framework for Consolidated Big Data and HPC

2020-2023

SLSNA

Prestação de Serviços no ambito do projeto SKORR

2020-2021

AppOwl

Deteção de Mutações Maliciosas no Browser

2020-2021

InterConnect

Interoperable Solutions Connecting Smart Homes, Buildings and Grids

2019-2024

T4CDTKC

Training 4 Cotec, Digital Transformation Knowledge Challenge - Elaboração de Programa de Formação “CONHECER E COMPREENDER O DESAFIO DAS TECNOLOGIAS DE TRANSFORMAÇÃO DIGITAL”

2019-2021

CLOUD4CANDY

Cloud for CANDY

2019-2019

HADES

HArdware-backed trusted and scalable DEcentralized Systems

2018-2022

MaLPIS

Aprendizagem Automática para Deteção de Ataques e Identificação de Perfis Segurança na Internet

2018-2022

SKORR

Advancing the Frontier of Social Media Management Tools

2018-2021

DaVinci

Distributed architectures: variability and interaction for cyber-physical systems

2018-2022

SAFER

Safery verification for robotic software

2018-2021

KLEE

Coalgebraic modeling and analysis for computational synthetic biology

2018-2021

InteGrid

Demonstration of INTElligent grid technologies for renewables INTEgration and INTEractive consumer participation enabling INTEroperable market solutions and INTErconnected stakeholders

2017-2020

Lightkone

Lightweight Computation for Networks at the Edge

2017-2019

CloudDBAppliance

European Cloud In-Memory Database Appliance with Predictable Performance for Critical Applications

2016-2019

GSL

GreenSoftwareLab: Towards an Engineering Discipline for Green Software

2016-2019

Cloud-Setup

PLATAFORMA DE PREPARAÇÃO DE CONTEÚDOS AUDIOVISUAIS PARA INGEST NA CLOUD

2016-2019

CORAL-TOOLS

CORAL – Sustainable Ocean Exploitation: Tools and Sensors

2016-2018

SafeCloud

Secure and Resilient Cloud Architecture

2015-2018

NanoStima-RL1

NanoSTIMA - Macro-to-Nano Human Sensing Technologies

2015-2019

NanoStima-RL3

NanoSTIMA - Health data infrastructure

2015-2019

SMILES

SMILES - Smart, Mobile, Intelligent and Large scale Sensing and analytics

2015-2019

UPGRID

Real proven solutions to enable active demand and distributed generation flexible integration, through a fully controllable LOW Voltage and medium voltage distribution grid

2015-2017

LeanBigData

Ultra-Scalable and Ultra-Efficient Integrated and Visual Big Data Analytics

2014-2017

Practice

Privacy-Preserving Computation in the Cloud

2013-2016

CoherentPaaS

A Coherent and Rich PaaS with a Common Programming Model

2013-2016

Team
001

Laboratory

CLOUDinha

Publications

HASLab Publications

View all Publications

2019

Simulation under Arbitrary Temporal Logic Constraints

Authors
Brunel, J; Chemouil, D; Cunha, A; Macedo, N;

Publication
Proceedings Fifth Workshop on Formal Integrated Development Environment, F-IDE@FM 2019, Porto, Portugal, 7th October 2019.

Abstract
Most model checkers provide a useful simulation mode, that allows users to explore the set of possible behaviours by interactively picking at each state which event to execute next. Traditionally this simulation mode cannot take into consideration additional temporal logic constraints, such as arbitrary fairness restrictions, substantially reducing its usability for debugging the modelled system behaviour. Similarly, when a specification is false, even if all its counter-examples combined also form a set of behaviours, most model checkers only present one of them to the user, providing little or no mechanism to explore alternatives. In this paper, we present a simple on-the-fly verification technique to allow the user to explore the behaviours that satisfy an arbitrary temporal logic specification, with an interactive process akin to simulation. This technique enables a unified interface for simulating the modelled system and exploring its counter-examples. The technique is formalised in the framework of state/event linear temporal logic and a proof of concept was implemented in an event-based variant of the Electrum framework. © J. Brunel, D. Chemouil, A. Cunha, & N. Macedo.

2019

Taming Hierarchical Connectors

Authors
Proença, J; Madeira, A;

Publication
Fundamentals of Software Engineering - 8th International Conference, FSEN 2019, Tehran, Iran, May 1-3, 2019, Revised Selected Papers

Abstract
Building and maintaining complex systems requires good software engineering practices, including code modularity and reuse. The same applies in the context of coordination of complex component-based systems. This paper investigates how to verify properties of complex coordination patterns built hierarchically, i.e., built from composing blocks that are in turn built from smaller blocks. Most existing approaches to verify properties flatten these hierarchical models before the verification process, losing the hierarchical structure. We propose an approach to verify hierarchical models using containers as actions; more concretely, containers interacting with their neighbours. We present a dynamic modal logic tailored for hierarchical connectors, using Reo and Petri Nets to illustrate our approach. We realise our approach via a prototype implementation available online to verify hierarchical Reo connectors, encoding connectors and formulas into mCRL2 specifications and formulas. © 2019, IFIP International Federation for Information Processing.

2019

Logics for Petri Nets with Propagating Failures

Authors
Gomes, L; Madeira, A; Benevides, MRF;

Publication
Fundamentals of Software Engineering - 8th International Conference, FSEN 2019, Tehran, Iran, May 1-3, 2019, Revised Selected Papers

Abstract
Petri nets play a central role in the formal modelling of a wide range of complex systems and scenarios. Their ability to handle with both concurrency and resource awareness justifies their spread in the current formal development practices. On the logic side, Dynamic Logics are widely accepted as the de facto formalisms to reason about computational systems. However, as usual, the application to new situations raises new challenges and issues. The ubiquity of failures in the execution of current systems, interpreted in these models as triggered events that are not followed by the corresponding transition, entails not only the adjustment of these structures to deal with this reality, but also the introduction of new logics adequate to this emerging phenomenon. This paper contributes to this challenge by exploring a combination of two previous works of the authors, namely the Propositional Dynamic Logic for Petri Nets [1] and a parametric construction of multi-valued dynamic logics presented in [13]. This exercise results in a new family of Dynamic Logics for Petri Nets suitable to deal with firing failures. © 2019, IFIP International Federation for Information Processing.

2019

On interval dynamic logic: Introducing quasi-action lattices

Authors
Santiago, R; Bedregal, B; Madeira, A; Martins, MA;

Publication
SCIENCE OF COMPUTER PROGRAMMING

Abstract
In this paper we discuss the incompatibility between the notions of validity and impreciseness in the context of Dynamic Logics. To achieve that we consider the Lukasiewicz action lattice and its interval counterpart, we show how some validities fail in the context of intervals. In order to capture the properties of action lattices that remain valid for intervals we propose a new structure called Quasi-action Lattices which generalizes action lattices and is able to model both: The Lukasiewicz action lattice, L, and its interval counterpart, (sic). The notion of graded satisfaction relation is extended to quasi-action lattices. We demonstrate that, in the case of intervals, the relation of graded satisfaction is correct (cf. Theorem 3) with respect to the graded satisfaction relation on the Lukasiewicz action lattice. Although this theorem guarantees that satisfiability is preserved on intervals, we show that validity is not. We propose, then, to weaken the notion of validity on action lattices to designated validity on quasi-action lattices. In this context, Theorem 4 guarantees that the dynamic formula which are valid with respect to L will be designated valid with respect to (sic).

2019

Epistemic Logics with Structured Knowledge

Authors
Madeira, A; Martins, MA; Benevides, MRF;

Publication
ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE

Abstract
Multi-agent Dynamic Epistemic Logic, as a suitable modal logic to reason about knowledge evolving systems, has emerged in a number of contexts and scenarios. The agents knowledge in this logic is simply characterised by valuations of propositions. This paper discusses the adoption of other richer structures to make these representations, as graphs, algebras or even epistemic models. This method of building epistemic logics over richer structures is called "Epistemisation". On this view a parametric method to build such Epistemic Logics with Public Announcements is introduced. Moreover, a parametric notion of bisimulation is presented, and the modal invariance of the proposed logics, with respect to this relation, are proved. Some interesting application horizons opened with this construction are stated.

Facts & Figures

4Papers in indexed journals

2020

14Proceedings in indexed conferences

2020

16Academic Staff

2020

Contacts