Recent Publications

Ferreira JF, Sobral JL.  2005.  ParC#: Parallel Computing with C# in .NET. Parallel Computing Technologies (LNCS 3606). Abstract

This paper describes experiments with the development of a parallel computing platform on top of a compatible C# implementation: the Mono project. This implementation has the advantage of running on both Windows and UNIX platforms and has reached a stable state. This paper presents performance results obtained and compares these results with implementations in Java/RMI. The results show that the Mono network performance, critical for parallel applications, has greatly improved in recent releases, that it is superior to the Java RMI and is close to the performance of the new Java nio package. The Mono virtual machine is not yet so highly tuned as the Sun JVM and Thread scheduling needs to be improved. Overall, this platform is a new alternative to explore in the future for parallel computing.

Oliveira JN, Rodrigues C.  2004.  Transposing Relations: from Maybe Functions to Hash Tables. MPC - 7th International Conference on Mathematics of Program Construction. 3125:334-356. Abstract

Functional transposition is a technique for converting relations into functions aimed at developing the relational algebra via the algebra of functions. This paper attempts to develop a basis for generic transposition. Two instances of this construction are considered, one applicable to any relation and the other applicable to simple relations only. Our illustration of the usefulness of the generic transpose takes advantage of the free theorem of a polymorphic function. We show how to derive laws of relational combinators as free theorems of their transposes. Finally, we relate the topic of functional transposition with the hashing technique for efficient data representation.

Pereira JO, Rodrigues L, Oliveira R.  2002.  Semantically Reliable Broadcast: Sustaining High Throughput in Reliable Distributed Systems. Concurrency in Dependable Computing. Abstract

Replicated services are often required to sustain high loads of multiple concurrent requests. This requirement is hard to balance with strong consistency. Typically, to ensure inter-replica consistency, all replicas should receive all updates. Unfortunately, in this case, a single slow replica may degrade the performance of the whole system. This paper proposes a novel reliable broadcast primitive that uses semantic knowledge to weaken reliable delivery guarantees while, at the same time, ensuring strong consistency at the semantic level. By allowing some obsolete messages to be dropped, the protocol that implements this primitive is able to sustain a higher throughput than a fully reliable broadcast protocol. The usefulness of the primitive and the performance of the protocol are illustrated through a concrete example.

Noble J, Vitek J, Lea D, Almeida PS.  1999.  Aliasing in object oriented systems. Object-Oriented Technology ECOOP’99 Workshop Reader. :793–793. Abstract

This chapter contains summaries of the presentations given at the Intercontinental Workshop on Aliasing in Object-Oriented Systems (IWAOOS’99) at the European Conference on Object-Oriented Programming (ECOOP’99) which was held in Lisbon, Portugal on June 15, 1999.

Almeida PS.  1997.  Balloon types: Controlling sharing of state in data types. ECOOP'97—Object-Oriented Programming. :32–59. Abstract

Current data abstraction mechanisms are not adequate to control sharing of state in the general case involving objects in linked structures. The pervading possibility of sharing is a source of errors and an obstacle to language implementation techniques.
We present a general extension to programming languages which makes the ability to share state a first class property of a data type, resolving a long-standing flaw in existing data abstraction mechanisms.
Balloon types enforce a strong form of encapsulation: no state reachable (directly or transitively) by a balloon object is referenced by any external object. Syntactic simplicity is achieved by relying on a non-trivial static analysis as the checking mechanism.
Balloon types are applicable in a wide range of areas such as program transformation, memory management and distributed systems. They are the key to obtaining self-contained composite objects, truly opaque data abstractions and value types—important concepts for the development of large scale, provably correct programs.

Cledou G, Barbosa L.  Submitted.  Modeling Families of Public Licensing Services: A Case Study. FME Workshop on Formal Methods in Software Engineering (FormaliSE). formalise2017.pdf
Fayollas C, Martinie C, Palanque P, Masci P, Harrison M, Campos JC, Silva SR.  2017.  Evaluation of formal IDEs for human-machine interface design and analysis: the case of CIRCUS and PVSio-web. Proceedings of the Third Workshop on Formal Integrated Development Environment. 240:1-19. Abstract1701.08465.pdf


Coelho F, Paulo J, Vilaça R, Pereira JO, Oliveira R.  2017.  HTAPBench: Hybrid Transactional and Analytical Processing Benchmark. Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering. :293–304. Abstract
Enes V, Moreno CB, Almeida PS, Leitão J.  2017.  Borrowing an Identity for a Distributed Counter. PaPoC '17 Proceedings of the 3rd Workshop on the Principles and Practice of Consistency for Distributed Data. a5-enes.pdf
Younes G, Almeida PS, Moreno CB.  2017.  Compact Resettable Counters through Causal Stability. PaPoC '17 Proceedings of the 3rd Workshop on the Principles and Practice of Consistency for Distributed Data. a3-younes.pdf
Pontes R, Pontes R, Burihabwa D, Burihabwa D, Maia F, Maia F, Paulo J, Paulo J, V.Schiavoni, V.Schiavoni et al..  2017.  SafeFS: A Modular Architecture for Secure User-Space File Systems (One FUSE to rule them all). systor17-final39.pdf
Cledou G, Proença J, Barbosa L.  2017.  Composing Families of Timed Automata. 7th IPM International Conference on Fundamentals of Software Engineering. Abstractfsen2017.pdf


Coelho F, Matos M, Pereira JO, Oliveira R.  2017.  Similarity Aware Shuffling for the Distributed Execution of {SQL} Window Functions. Distributed Applications and Interoperable Systems - 17th IFIP WG 6.1 International Conference, DAIS 2017, Held as Part of the 12th International Federated Conference on Distributed Computing Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 1. :3–18. Abstract


Maia F, Paulo J, Coelho F, Neves F, Pereira JO, Oliveira R.  2017.  DDFlasks: Deduplicated Very Large Scale Data Store. Distributed Applications and Interoperable Systems - 17th IFIP WG 6.1 International Conference, DAIS 2017, Held as Part of the 12th International Federated Conference on Distributed Computing Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 1. :51–66. Abstract


Masci P, Zhang Y, Jones P, Campos JC.  2017.  A Hazard Analysis Method for Systematic Identification of Safety Requirements for User Interface Software in Medical Devices. 15th International Conference on Software Engineering and Formal Methods, SEFM 2017. Abstractsefm17-cameraready.pdf

Formal methods technologies have the potential to verify the usability and safety of user interface (UI) software design in medical devices, enabling significant reductions in use errors and consequential safety incidents with such devices. This however depends on comprehensive and verifiable safety requirements to leverage these techniques for detecting and preventing flaws in UI software that can induce use errors. This paper presents a hazard analysis method that extends Leveson's System Theoretic Process Analysis (STPA) with a comprehensive set of causal factor categories, so as to provide developers with clear guidelines for systematic identification of use-related hazards associated with medical devices, their causes embedded in UI software design, and safety requirements for mitigating such hazards. The method is evaluated with a case study on the Gantry-2 radiation therapy system, which demonstrates that 1) as compared to standard STPA, our method allowed us to identify more UI software design issues likely to cause use-related hazards; and 2) the identified UI software design issues facilitated the definition of precise, verifiable safety requirements for UI software, which could be readily formalized in verification tools such as Prototype Verification System (PVS).